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Abstract 

In the final quarter of 2022, OpenAI released its first generative pre-trained transformer large language 

model (LLM), featuring fine-tuning capabilities, a developer’s suite, a playground environment, and an 

updated user interface for non-developers in the form of ChatGPT 3.0. This launch sparked widespread 

public interest, granting greater access to researchers and developers who applied the model across 

various sectors, including healthcare services and business analysis applications (Marquis et al., 2024). 

However, despite the increased interest, limited research has examined GPT 3’s potential benefits 

in educational settings, particularly in language learning and assessment. This study explores the 

alignment of scores of a fine-tuned GPT model for grading oral English assessments with that of the 

true values scores of a human grader in university-level English as a Second Language (ESL) courses 

using few-shot learning. Two models were trained and compared against a human scoring standard: 

one specialized model and another designed for general multi-test applications. Both models were fine-

tuned using a limited size training data set and language processing (NLP) techniques, employing a 

specifically designed grading matrix and output format. Following training, actual test data from students 

was input into the models, and the resulting grades were recorded in an Excel file. The models were 

evaluated using three analytic metrics for artificial intelligence models: Spearman’s rank correlation 

(SRC), p-value, and mean absolute error (MAE)—metrics particularly suited for small training datasets 

accommodating the study’s limitation of small datasets. The results of the specialized model produced 

an SRC of 0.706, and p-value of 0.022, indicating that the specialized model demonstrated a relationship 

that was moderately statistically significant in its predictions, with a reasonable degree of alignment 

with human scores indicated by the MAE value of 0.617. On the contrary, the generalized model failed 

to achieve statistical significance or alignment. However, it must be noted that the investigation was 

hampered by the very limited training data size that resulted in frequent misalignment and overfitting, 

leading to uncertainty in meaningful results.
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1. Introduction

OpenAI’s ChatGPT model was the company’s first publicly available AI chatbot, consolidating GPT 

models one through three. ChatGPT introduced the world to the capabilities of AI technology, and its 

accessibility to the general public led to a growing pool of practical applications. These innovations have 

trickled down to the education sector, with applications ranging from analyzing student academic writing 

to assisting students with language pronunciation (Roumeliotis & Tselikas, 2023).

Before GPT, early studies on AI-powered machines in the 1990s focused on datasets like the 

Switchboard-1 Telephone Speech Corpus, created by Godfrey and Holliman in 1993. This dataset 

included over 2,000 recorded phone conversations on 70 different topics intended to aid the development 

of Automatic Speech Recognition (ASR) systems by capturing human conversation dynamics and 

speech variability (Graff & Bird, 2000). The data set represented the largest attempt to gather data for 

ASR researchers. 

As a result, ASR software began to emerge, such as Dragon Naturally Speaking, which debuted in the 

late 1990s (McCrocklin & Edalatishams, 2020). This software, primarily a language model transcription 

tool, was used by researchers and educators. Building on this technology, subsequent studies explored its 

application in second language classrooms, particularly for pronunciation development. ASR-powered 

applications scored learners’ pronunciation styles, with researchers reviewing transcription accuracy. 

While these studies noted improvements in student pronunciation, they also revealed substantial 

drawbacks, including low adoption in classrooms due to ASR’s mediocre reliability and transcription 

accuracy (McCrocklin et al., 2018). This highlighted the challenge of insufficient data for model 

improvement.

Three decades later, the feasibility of AI-based applications in language education regained traction. 

Studies began evaluating AI’s potential, particularly in oral English education. For example, Zhou (2019) 

examined English language students’ use of AI-powered apps like LAIX and Casually Speak to prepare 

for oral assessments. However, a survey of 200 students showed a steep decline in app usage—from 20% 

after one month to an additional 8% drop within a year. The study concluded that inadequate scoring 

mechanisms, limited spoken corpora, and unsupervised usage discouraged sustained engagement and 

raised concerns about students bypassing responsible-use guidelines, leading to increased cheating.

To address these issues, AI applications shifted focus from assisting students with oral skills to 

supporting educators with written assessments. One early example was the Duolingo English Test (DET), 

which emerged in 2016 as an evolution of Duolingo’s 2012 language-learning platform (Settles et al., 

2020). The DET used customized NLP techniques, integrating item response theory with multiple-choice 

assessment creation. This approach enabled a binary scoring system that minimized ambiguity in student 

responses and improved reliability. In practice, DET provided quantitative results for English proficiency 
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assessments, reducing grading time. However, it remained limited in scope, as it did not assess speaking 

or listening skills.

Renewed interest in AI-based oral test assessments emerged with Koizumi (2022), who highlighted 

the challenges of validity and reliability in oral assessments, often influenced by human graders’ 

subjectivity, varying skill levels, and biases. Koizumi emphasized the need for standardization using 

rubrics that account for variability and provide actionable feedback with quantifiable results in both 

formative and summative testing frameworks.

In Japan, prioritizing oral skills assessment has become a national focus in recent years. Since the 

2022 academic year, all third-year public junior high schools in Tokyo have been required to conduct 

oral examinations, with evaluations outsourced to private contractors. In the first wave of examinations, 

audio data was sent offshore to the Philippines for assessment by local graders (Honda & Tsuchidate, 

2022). While this approach provided an alternative to in-house grading, it raised concerns about labor 

intensity and potential data security breaches under foreign legal frameworks.

To contribute to the field of AI in education, this study explores the potential of a fine-tuned GPT-

3.5 turbo model to generate predictions closely aligned with actual scores and to determine whether 

a monotonic relationship exists between its predictions and human-assigned grades when trained 

with a small dataset using a process known as few-shot learning (IBM, 2024). The Spearman Rank 

Correlation (SRC), p-values and Mean Absolute Error (MAE) will provide valuable insights into the 

mechanics of the models’ predictability operations and guide further fine-tuning of the model by targeted 

improvements to address specific weaknesses. 

This study has two exploratory objectives. The primary goal is to create a highly specialized model that 

demonstrates statistically significant performance with acceptable alignment to human scoring standards. 

The secondary objective is to develop a more generalized model suitable for broader assessment purposes 

through prompt design and additional small size data sets.

2. Method

2.1 Processes - Process One

There were three major processes involved in this project, as shown in Figure 1. The study involved 

50 consenting students enrolled in a CEFR A1-A2 level English course (Kenny & Woo, 2011) as a 

second language class focusing on oral fluency at a university in Japan. Of the 50 datasets gathered, 

40 were used for creating training data, and the remaining 10 were reserved for evaluating model 

performance. This very small sample size would affect the statistical significance of the study’s results 

but could still indicate whether further exploration of the models is warranted. Each student was required 

to complete a series of three oral tests, designed as part of their course outcome requirements. The tests 
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consisted of topic-specific scripted interviews contained in a rubric developed for use by both the fine-

tuned model and human grader.

2.1.1 Rubric Development for Fine-Tuning Conditionals

Prior to data collection, a rubric was designed to account for entropic loss calculations and binary 

conditional classifications. Two key considerations guided the rubric’s design: The first was whether 

the rubric reflected the students’ ability to produce English conversational oral output aligned with 

course outcomes, and second, whether the rubric accommodated the cognitive processes of both 

human and AI graders.

The rubric was informed by Schema Theory  (Piaget, 1952; Alexander, 2003; Ghosh & Gilboa, 

2014) and Cognitive Load Theory (Sweller, 1988; van Merrienboer & Sweller, 2005). These 

frameworks emphasized the importance of managing cognitive load for both human and AI assessors. 

Research by Lake et al. (2017) demonstrated that the learning schema of an AI model mirrors that of 

a human assessor, as machine learning systems make inferences and representations based on small 

datasets, akin to human cognitive processes.

The grading rubric for student performance was influenced by Roever and Ikeda’s research (2021), 

on interactional competence. Their rubric included six criteria for assessing role-play development:

“Facility with the language 

Language use to deliver intended meanings 

Language use for mitigation 

Social actions 

Engagement in interaction 

Turn organization” (Roever & Ikeda, 2022, p11) 

Of these, three criteria—language use for mitigation, 

Figure 1 　Training Flow Diagram
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engagement in interaction, and turn organization—were selected as outcome markers for Tests 1 

through 3. The exclusion of the other three criteria was justified by two factors: the low-level language 

proficiency of students in the CEFR A1-A2 course, and the need to control vocabulary and sentence 

structures in dialogues for ease of analysis during successive model training iterations.

The selected criteria were defined as follows:

・�Language Use for Mitigation (LM): Encompassed opening and closing conversations and the 

use of politeness strategies.

・�Engagement in Interaction (EI): Included responses to questions with reasoning. The explicit 

use of “because” served as a reasoning marker for the GPT grader. Indicators of interactive 

listening, such as repeating statements, signified comprehension checks.

・Turn Organization (TO): Addressed the student’s ability to know when to speak in a dialogue.

In the final rubric, these three criteria were mapped to a binary grading mechanism supplemented 

by target vocabulary and grammar requirements, which were constants across all prompt fields. These 

elements were incorporated into the training data for Test 1 seen in Appendix A. To score a point, 

students needed to meet all prompt conditions. If one or more conditions were unmet, no point was 

awarded. However, the oversimplification of the rubric for ease of grading may have inadvertently 

impacted the efficacy in measuring the student’s English oral language ability.

The cognitive load for both AI and human graders was managed by designing a rubric with simple, 

binary scoring conditions. This approach reduced cognitive strain and minimized error rates. For the 

fine-tuned model, its limited dataset inherently constrained its cognitive capacity, which aligned well 

with the rubric’s straightforward structure. The binary design also facilitated descriptive and metric 

analysis during training loop iterations, contributing to model improvement.

Using binary-choice assessment Söderbom (2009) emphasized the transition of fine-tuned models 

from random guessing to informed decision-making. This process underscored the importance 

of structured training loops incorporating clear NLP prompts, detailed feedback, and incremental 

adjustments to the rubric. These measures guided the model toward achieving alignment patterns with 

that of the human grader.

2.1.2 Data Collection 

The tests were administered in person by the researcher, who graded the students’ performances 

live while simultaneously recording their responses. Audio data was captured in the Waveform Audio 

(.wav) file format using a custom-built Python application. This was developed from the Pydub library 

for audio recording and Tkinter for the graphical user interface (GUI). The recorded responses were 
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systematically categorized and securely stored on a solid-state drive for subsequent processing and 

analysis.

2.1.3 Data processing 

Data processing was performed using a bespoke application developed by the researcher. The initial 

step involved transcription using OpenAI’s Whisper Multilingual (default) and Whisper-en, an English 

ASR model. Following transcription, a total of 1,997 transcription and audio files were meticulously 

reviewed and cleaned to correct phrasing errors, preserve meaning and context, and ensure that all 

transcriptions were in English when using the default Whisper ASR model.

After the cleaning process, the transcription files were combined and reformatted into a JavaScript 

Object Notation Line (jsonl) compatible file format. This format was prepared specifically for use with 

the fine-tuned GPT model, developed in Process Three, to facilitate its analysis and training loops.

2.2 Process Two and Three

In process two the engineered prompts were combined with the cleaned transcription files and added 

to training data for both models.  A software application was developed to assist with the creation and 

formatting of training data. The jsonl file data was formatted in accordance with Open AI’s formatting 

guidelines, and classified into three specific categories: System, User and Assistant as seen in the code 

snippet seen in Figure 2.0. Briefly, the system contains context and environmental parameters for the 

GPT model to be aware of. The user contains the communication between the user and AI that serves as 

a space for placing the analysis object, and assistant contains output format and grading rubric criteria.

The system role was used to state that the AI was grading the dialogue and placing emphasis on points 

of rubric interest. The user role was populated with a two-person dialogue of single statement and causal 

response. Finally, the assistant role managed the AI’s response following a predefined output based on 

the oral test rubric. These were allocated a binary true false switch to facilitate grading and analysis. 

While creating the training data, considerations were made in terms of token usage and fine-tuning 

entropic loss values while in training loops.

2.2.1 Token Usage

Tokens refer to the individual packets of text that the model processes. There is no fixed standard 

for what constitutes a token; it may include integers, individual words, or character strings (OpenAI, 

2022). As an example, the phrase, including the brackets and quotation marks (“the cat sat on the 

mat”), would have a token count of 10. Each word is allocated a token, and punctuation marks, such 

as brackets and quotation marks, are also allotted as separate tokens. Token size and usage are critical 

for fine-tuning as they influence how the model interprets and learns from the data. Minimizing 
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unnecessary tokens, such as line breaks, spaces, punctuation, and positional markers (e.g., brackets 

and square brackets), is essential to enhance fine-tuning efficacy and cost effectiveness.

Additionally, token usage serves as a metric for OpenAI to calculate the cost of training a model 

and its associated API usage, particularly when embedded into applications like grading systems. In 

this research, tokens were employed during every training session and API call for grading oral tests, 

and usage was billed accordingly by OpenAI.

2.2.2 Training Analytics - Entropic Loss

In the training phase the Entropic loss metric, also known as cross-entropy loss, is an essential 

metric for measuring and improving the training of classification models (OpenAI, 2024; Gunel et al., 

2021; Mao et al., 2023). When a model makes probabilistic predictions, it assigns confidence scores 

to each possible answer. Put simply as an example, the model might estimate it is 80% confident the 

answer is “A” and 20% confident it is “B” when compared to the true score.

The entropic loss metric compares the model’s confidence scores to the actual answers, quantifying 

how far the model’s predictions deviate from perfect alignment. A smaller entropic loss value indicates 

better predictions and improved model performance. The entropic loss is mathematically defined as 

follows:

In the formula,  denotes the total loss,  is the number of data samples while  is the total number 

of classes the model is attempting to predict.  is a binary indicator showing if a specific sample 

 belongs to a particular class . If true, the value is 1; otherwise, 0 for the remaining classes. To 

quantify demerit allocations for incorrect estimates, a logarithmic penalty,  is applied. For 

example, in a prediction of 80% for the correct answer, the penalty is low, whereas 20% certainty 

would warrant a high penalty and force the models to learn and improve. 

Two summations are performed. The first, adds all error for likely answers on all class , and 

 samples, and the second adds up the total of all examples in the batch, a data processing area 

calculated from the total training data size. Lastly,  is used to convert the negative previous 

summation result, and then averaged across the number ( ) of samples equating the loss of the batch.

Once the training was complete, the remaining ten students’ oral test transcriptions were processed 

through the secondary program that incorporated the fine-tuned model’s API and job reference number 

from OpenAI.

2.2.3 Model Performance Metrics

Each fine-tuned model underwent a series of analyses, which included a Spearman Rank Correlation 
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(SRC), p-value, and Mean Absolute Error (MAE) metrics, explained in the following sections, 

alongside scatterplots to guide alterations in the training data and improve model performance. The 

SRC, p-value, and MAE analyses were implemented in a custom application using Python’s SciPy 

library (scipy.stats) for the statistical calculations and Matplotlib (matplotlib.pyplot) for generating 

scatterplot graphs.

2.3 Spearman Rank Correlation.

The Spearman Rank Correlation (SRC) is a valuable metric for measuring the rankings of two sets 

of variables, commonly applied in AI research involving small datasets and few-shot learning (Wang & 

Brown, 2008; Wu, Zhang, & Bao, 2015; Mumtaz & Giese, 2022). SRC is a non-parametric measurement 

tool, in that it does not impose strict assumptions about variable distributions. Instead, it evaluates the 

order or rank of variables rather than their exact values, making it suitable for monotonic data where 

one variable consistently increases or decreases with the other, without changes in the direction of data 

points. The metric is mathematically defined by the following formula (Spearman, 1904; Janse et al., 

2021; The Knowledge Academy, 2023):

In this equation  means that  represents the model score 

prediction against the actual scores (  ), or in the case of this investigation, 

The values are then calculated to produce the difference between the ranks of the variables and 

subsequently squared. The calculation is then completed by assigning  with the number of test runs. 

If the values of s = +1, then the variables have a prefect positive monotonic relationship. If s = -1, 

then there is a perfect negative monotonic relationship and finally an s = 0 indicates no monotonic 

relationship exists.

2.4 Probability value (p-value).

The p-value is often associated with the Spearman Rank Correlation (SRC) metric to serve as a binary 

indicator for null hypothesis agreement or rejection, thereby determining the statistical significance of 

monotonic relationships. This makes it particularly suited for evaluating AI models (Beaujean et al., 2011).

After the SCR is calculated the  value is inserted into the z-statistic for a sample size greater than 

30 or a t-statistic of less than 30, ideal for this investigation’s dataset size. This assessment determines 

whether the observed correlation is statistically significant or the result of random chance (Wasserstein 

& Lazar, 2016). This is illustrated in the following formula. 
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The SCR, the  value replaces the  variable seen below.

The p-value results are indicative of the following. If p is less than 0.05 then the observed result is 

unlikely to have occurred by random chance, rejecting the null hypothesis . However, If the p-value 

is greater or equal to 0.05 then the results are not statistically significant, and the null hypothesis  

stands. This threshold ensures that any observed correlations were judged for their likelihood of being 

due to either random variation or genuine monotonic relationships. 

2.5 Mean Absolute Error. 

Mean absolute error (MAE) metric measures the average absolute difference between predicted values 

and actual values and has seen reliable use in AI regression model development using few shot-learning 

low data sizes (Qi et al., 2020a;  2023; Willmott & Matsuura, 2005). MAE provides insights into the 

relationship between predicted data and actual data, offering a reliable measure of model performance 

(Unal et al., 2023). The metric is useful for guiding further training development and project feasibility. 

MAE is well-suited for quantifying the alignment of predicted scores with human-assigned grades, 

providing a foundational evidence base for refining NLP prompt design and data size balances. 

The MAE is calculated using the following equation.

In this formula, n represents the total number of observations,  is the predicted value of an 

observation compared to the actual value  . The absolute value operation ( )

ensures that the true values are maintained numerically positive to prevent positive and negative 

prediction cancelations that result in a misleading low average error. 

In relation to this research, the equation is populated with model specific variables.

 

In the equation, calculates the sum of the absolute difference of the Fine-tuned model score ( ) 

and the human score ( ) and divide it by the total number of tests ( ). In this case, 10.

A high MAE indicates high deviation between the two scores, suggesting the model requires further 

training whereas a low would mean closer alignment reflective of a model with better performance. 
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3. Results

Two models were being trained with results separated into three fine-tuned models and their 

subsequent four runs. The primary model (hereby known as Fine-tune 1) was tuned to assess only Oral 

Test One. The two secondary models (hereby known as Fine-tune 2 and Fine-tune 3) were developed for 

a general assessment role trained with Oral Tests One through Three. 

The results for all three fine-tuned models are as presented.

3.1 Fine-tune 1 Model

Fine-tune 1 contained 40 participant transcriptions as contributors to training sets created only from 

Oral Test One. Included was a very general system instruction prompt design establishing the model’s 

working environment. A second language grader without extra procedural criteria. 

	 “messages”: [

	 {

	 “role”: “system”,

	 “content”: “You are grading second 

	 language learning students conversational dialogue.”

	 } ]

In this system prompt design, the NLP instructions were limited to positioning the GPT model within 

the context of the task and did not contribute to the finer aspects of grading. This approach evaluated 

the impact that system instructions had on the entropic loss value during training, either increasing or 

decreasing it, providing a starting point for measurement of prompt design. 

Seen in Figure 2, during training, the entropic loss value on the y-axis initially quickly declined 

between epochs 1-100 on the x-axis, indicating relatively fast adaptations to patterns in the training data 

sets. After this decline, the entropic loss stabilized, reaching its minimum value of 0.3767. This signified 

that the model had learnt the base structure of the data sets but was uncertain on optimal generalization 

or potential overfitting. That is to say, the core elements of the training data were learnt as well as some 

Figure 2 　Fine-tune 1  Model Training: Entropic Loss
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unnecessary noise in the data that created a model too specific and thus lost its generalizability for other 

test data. 

In the four runs, the fine-tuned GPT model’s scoring was consistent, each having a similar trend and 

minimal deviation in scores. The model produced accuracy rates of between 40% to 60% as seen in 

Table 1. The SRC analysis of run four came in at 0.706, indicating that the model had reached grading 

pattern alignment stability with the human grader after being trained on Oral Test One data sets only, and 

thus hyper-specializing the model. Additionally, the p-value of 0.022, confirmed positive for moderate 

statistical significance in that the observed correlation in ranking was unlikely to be due by chance. 

However, it must be noted that this was an exploratory study aimed at investigating if the model has a 

monotonic relationship and is worth the investment in additional training data and prompt designs for 

later robustness and reliability evaluations. 

Table 1　Fine-tune 1 Run Scores

Test Number 1 2 3 4 5 6 7 8 9 10

Human Score 5 4 4 1 5 4 4 5 5 5

Fine-tune 1 Run 1 4 5 5 4 4 5 4 5 5 5

Fine-tune 1 Run 2 4 5 5 5 4 4 5 4 5 5

Fine-tune 1 Run 3 5 4.75 4.65 4 5 3.5 5 5 4.75 5

Fine-tune 1 Run 4 5 4.75 4.65 4 5 3.5 5 5 4.75 5

The MAE score was 0.617, indicating a moderately low average error and a good balance between 

rank and accuracy. This result warranted further fine-tuning as a test specific specialized fine-tuned 

grader model for future use. 

The scatter plot for the first model, as shown in Figure 3, illustrates that the fine-tuned points generally 

clustered near perfect alignment, producing a moderate to strong distribution in score correlation 

supporting the SRC and MAE metric results. Seen in Table 2.

Table 2　Fine-tune 1 Model Results

Loop number Entropic loss SRC P-value MAE

Fine-tune 1 0.3767 0.706 0.022 0.617

Note. SRC = Spearman Rank Correlation; P-value = Probability value; MAE = Mean Absolute Error.
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3.2 Fine-tune 2 Model

Creation of a more generalized model that could score Oral Tests Two and Three involved an 

additional 20 training data sets with an extra line of specific NLP instructions in its prompt design, 

namely the requirement of person B to answer person A’s question. This was done with the intention 

to maintain the SRC and p-values to significant thresholds and decrease entropic loss and was a 

modification across all data sets. The modified system role is shown below.

	 “messages”: [

	 {

	 “role”: “system”,

	 “content”: “You are grading second 

	 language learning students conversational dialogue. 

	 person_b must answer person_a question.”

The training data was reformatted and compiled to create Fine-tune 2 model of which the results are 

seen in Table 3.

The new training data was used to create the Fine-tune 2 model and had an entropic loss of 0.2845, 

decreasing from the previous 0.33767 seen in Figure 4 and Table 3. This showed that the model only 

slightly benefited from the 20 extra training datasets, half from Oral Test Two and the other half from 

Oral Test Three along with the addition of minimal NLP instructions.

As in Fine-tune 1, the training loss showed a steep fall at the same epochs, suggesting a fast-learning 

rate. This behavior is representative of a model learning sphere that not only learnt core patterns but 

included the consumption of noise and extraneous details, which lead to the phenomenon known as 

overfitting. 

Figure 3 　Fine-tune 1  Resuit Distribution
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Table 3　Fine-tune 2 Run Scores

Test Number 1 2 3 4 5 6 7 8 9 10

Human Score 5 4 4 1 5 4 4 5 5 5

Fine-tune 2 Run 1 5 3 3 4 3 5 3 5 5 5

Fine-tune 2 Run 2 5 5 3 3 4 3 5 3 5 5

Fine-tune 2 Run 3 5 5 4 4 4 2 5 4 5 5

Fine-tune 2 Run 4 5 5 4 2 4 3 5 5 4 5

Fine-tune 2 model demonstrated moderate alignment with the human scores, achieving an SRC 

score of 0.457, particularly in the high score range of the human grader. However, it also overestimated 

low scores as indicated in the Fine-tune 2 run scores in Table 3. Noticeable deviations were observed, 

especially in the midrange scores. The p-value of 0.57 seen in Table 4 was too high to be statistically 

significant indicating the correlation ranking was likely due to chance. The MAE score of 0.6 was also an 

indicator of low average error range and reasonable balance that required further fine-tuning adjustments 

similar to that in Fine-tune 1.

Table 4　Fine-tune 2 Model Results

Loop number Entropic loss SRC P-value MAE

Second loop 0.2845 0.457 0.57 0.600

Note. SRC = Spearman Rank Correlation; P-value = Probability value; MAE = Mean Absolute Error.

In Figure 5 the scatter plot graph signified some agreement of the model with the human greater, 

however deviations seen in scores four and five showed that the model on occasions over and 

underestimated scores.

Figure 4 　Fine-tune 2 : Entropic Loss
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3.3 Fine-tune 3 Model

The focus of the Fine-tune 3 was on the exploration of prompt design on the model’s prediction 

confidence scores and subsequent entropic loss value during training. A further two more learning 

parameters were added to the system role NLP instructions to increase its learning complexity. 

	 {

	 “messages”: [

	 {

	 “role”: “system”,

	 “content”: “You are grading second 

	 language learning students conversational dialogue. 

	 person_b must answer person_a question. first greet 

	 person a then describe how person_b is feeling\”
	 ] }

Fine-tune 3 was trained and produced a significantly lower entropic loss measure of 0.0057 as seen in 

Figure 6. The loss was a sharp drop that stabilized in the 80th epoch with a very small amount of variation 

and much sooner than the previous two loops. It indicated that the additional NLP prompts provided a 

more task specific instruction set and suggested an increased detail in understanding of the tasks. 

However, the improvement in entropic loss came at the expense of grading alignment scores across all 

four runs, seen in Table 5. The SRC score of 0.416, signified a depreciating trend of weaker alignment 

correlation to the human grader than in the Fine-tuned 2 model. This coefficient, being closer to zero, 

suggests an insignificant monotonic relationship between the model’s predictions and the human grader’s 

scores. The p-value of 0.688 was much higher above the threshold of p<0.05, further confirming its 

weakness and statistical irrelevance as seen in Table 6.

Figure 5 　Fine-tune 2  Model Scatter plot
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Table 5　Fine-tune 3 Run Scores

Test Number 1 2 3 4 5 6 7 8 9 10

Human Score 5 4 4 1 5 4 4 5 5 5

Fine-tune 3 Run 1 5 5 4 2 3 4 5 5 5 5

Fine-tune 3 Run 2 4 3 5 5 4 3 5 3 5 4

Fine-tune 3 Run 3 5 5 4 3 5 4 5 5 2 4

Fine-tune 3 Run 4 5 4 3 4 3 5 4 5 5 3

The MAE score was 0.9, significantly higher than previous iterations, indicating unacceptable grading 

deviations. This result added to the weak SRC score and the statistical insignificance of the Fine-tune 3 

Model, further highlighting its limited reliability and performance.

Table 6　Fine-tune 3 Model Results

Loop number Entropic loss SRC P-value MAE

Fine-tune 3 0.0057 0.146 0.688 0.900

Note. SRC = Spearman Rank Correlation; P-value = Probability value; MAE = Mean Absolute Error.

The scatterplot observations further revealed significant deviations from the human scores, with larger 

distances indicating substantial prediction errors. These outliers suggested that the model was struggling 

to achieve accurate predictions, highlighting its limited performance in aligning with human grading 

seen in Figure 7.

Figure 6 　Fine-tune 3  Entropic Loss
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4. Discussion

The results of this exploratory study identified the potentials and limitations of fine-tuning GPT-3.5 

turbo models for assessing oral language proficiency in small dataset environments. The results from the 

Fine-tune 1 model provided encouraging initial outcomes, with the entropic loss in training stabilizing 

quickly and achieving a minimum value. This reflected the model’s ability to learn foundational 

considerations from the training data, such as basic sentence structure and turn-taking dynamics in 

conversational exchanges. However, while the MAE and SRC metrics supported the close alignment to 

the true scores of the specialized Fine-tune 1 model, its hyper-specialization raised concerns about its 

adaptability to diverse datasets. For example, the model performed well within the specific parameters 

of Test One but showed limited versatility when faced with variations in language use or unseen 

variables used in conversations such as fillers, and word repetitions. This highlights a major trade-off 

in fine-tuning AI models, that is, achieving high performance on narrowly defined tasks often sacrifices 

generalizability needed for practical applications in language education.

Fine-tune 2 and Fine-tune 3 models showed further challenges in finding a balance in precision and 

flexibility. Although additional data and refined NLP instruction sets were incorporated to improve model 

performance, the results were inconsistent. Fine-tune 2 demonstrated a moderate SRC score, suggesting 

reasonable alignment with high-score ranges, but there were overestimations in low-score ranges and 

deviations in midrange scores. This signified deep irregularities in the model’s grading logic. Qualitative 

observations revealed that the model may have misinterpret hesitation markers or filler words in student 

speech as indicators of poor performance, whereas the human grader accounted for these as natural 

elements of oral language at the beginner level. Moreover, the model’s consistent overfitting could 

be attributed to the layout design of the training sets. A review of the training data further supported 

this, revealing a complete absence of hesitation markers and filler words as examples for the AI to 

Figure 7 　Fine-tune 3  Model Scatter Plot
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learn. Additionally, large spaces between the system, user, and assistant roles, may have contributed to 

substantial noise that could have resulted in overfitting.

Fine-tune 3 was designed to improve entropic loss through additional parameters in the prompt design. 

Although the entropic loss improvements implied better data learning at the training level, the model’s 

SRC and MAE scores showed weaker alignment with human grading, and the high p-values confirmed 

the statistical insignificance of its predictions. These findings suggested that quantitative improvements 

in entropic loss do not necessarily make gains in grading accuracy.

The scatterplots and statistical analyses revealed important qualitative gaps in the model’s 

understanding of human conversational dynamics. Fine-tune 3 appeared to learn surface-level patterns, 

but it struggled to generalize to unseen data where conversational structures were absent from the 

training data. These results emphasize the need to carefully compile training data and design NLP 

prompts to accommodate interactional conversation dynamics and turn-taking. The overfitting observed 

in Fine-tune 3 also underlined the need for iterative experimentation with rubric designs and training 

loops to achieve a balance between task-specific precision and adaptability across different datasets. 

Further studies with larger data sets and robustness metrics like bootstrapping, may also provide insights 

into specific divergences between model predictions and human grading. 

5. Conclusion

The explorative investigation was moderately successful in creating a statistically significant model. 

Fine-tune 1 demonstrated a moderate statistical significance and alignment with human grading within 

a specially defined task, indicating further investment in development. However, the wider scope of 

Fine-tune 2 and Fine-tune 3 fell short of generalizability and reliability in measuring the monotonic 

relationship found between Fine-tune 1 and the human grader. These results highlighted the challenges 

of balancing specialization and adaptation in fine-tuning AI models for complex tasks like oral language 

assessment. Fine-fine 1 warranted future further development of the training process. An increase in data 

set size with succinct and efficient prompt designs will be critical to enhance the applicability of AI-

driven assessment tools for language education.

6. Limitations

This project faced limitations in time and human resources on prominent tasks, such as programming 

applications, creating training datasets, and transcribing audio data all of which were performed by a 

single researcher. Managing these tasks alone made it difficult to progress beyond the multi-training 
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loop stage within the one-year period. A larger team with at least two researchers could have helped 

the project move forward faster and produced more robust results. However, assembling such a team 

proved difficult due to the specific technical expertise needed to work with AI training systems currently 

unavailable at the home institution.

As mentioned throughout this report, the project was also constrained by the use of a small dataset, 

which significantly impacted the training and evaluation of the fine-tuned GPT-3.5 turbo models. The 

ability of the models to generalize was limited, as it lacked sufficient exposure to a diverse range of 

speech patterns, hesitation markers, and filler words commonly found in beginner-level oral assessments. 

This constraint likely contributed to the models’ tendency to overfit to the training data and their struggle 

to adapt to unseen datasets, resulting in weaker alignment with human grading in broader tests. The 

small dataset size further limited the reliability and robustness of statistical analyses, such as SRC and 

p-values, raising questions about the validity of the findings for larger-scale applications.

Regarding transcriptions of participant oral recordings, OpenAI’s Whisper AI was used as the main 

ASR tool. Audio data was processed through its API and returned as text files. However, Whisper AI 

struggled with beginner-level Japanese pronunciations of English, causing frequent errors distinguishing 

pronunciation variations and local pronouns, causing incorrect word use in transcriptions and sometimes 

transcribing in the wrong language entirely. These issues increased the time required to manually correct 

the transcriptions as recorded in the audio file. The high error rate of Whisper AI ASR, raised concerns 

about its impact on future AI-powered applications and brought forth the issue of interdependency of the 

two, prompting a proposed future investigation into ASR ground up development of non-native English 

ASRs. 

Notes:

1	 This research was a part of a presidential research grant issued by Josai International University in 2023.
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Appendix A

Oral Test One grading rubric properties.

Prompt 1 

・ Opening of conversations (LM)
・ Probe - Target vocabulary/ appropriate grammar. [1pt]
・ Topic management, reaction:  Answers interviewer’s questions (TO) [1pt]
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Prompt 2 

・ Probe - Target vocabulary/ appropriate grammar. [1pt]
・ �Topic management, reaction: Answers interviewer’s questions and provides reasoning using 

because (TO) (EI) [1pt]

Prompt 3 

・ Probe - Target vocabulary/ appropriate grammar. [1pt]
・ Topic management, reaction: Answers interviewer’s (TO) [1pt]

Prompt 4 

・ Exiting conversation (LM) [1pt]
・ Probe - Target vocabulary/ appropriate grammar. [1pt]
・ �Topic management, reaction:  Presents new topic to interviewer provides reasoning using because 

(EI) [1pt]

Prompt 5 

・ Closing conversation (LM) [1pt]
・ Probe - Target vocabulary/ appropriate grammar [1pt]

Oral Test One grading rubric and assistant NLP for Fine-tuned models and human grader.

Dialogue Segment One

Segment All correct Not correct Not correct Not correct

A: Hi. How 
are you?

B: Hi D I’m 
good.

1.Grammar: 1,
2.Opening question 
answered: 1,
3.Explanation: 
Answered Person 
A’s Questions 
correctly.,
Total score: 1

1.Grammar: 1,
2.Opening question 
answered: 0,
3.Explanation: did 
not Answer Person 
A’s Questions 
correctly.,
Total score: 0

1.Grammar: 0,
2.Opening question 
answered: 0,
3.Explanation: Did 
not use I am before 
the adjective.,
Total _score: 0

1.Grammar: 0,
2.Opening question 
answered: 0, 
3.Explanation: Did 
not use I am before 
the adjective.,
Total score: 0

Dialogue Segment Two

Segment All correct Not correct Not correct Not correct

A: Why is 
that?

B: Because 
I slept well 
last night. 
How about 
you?

1.Grammar: 1,
2.Opening 
explanation: 1
3.Includes the word 
(because): 1
4.includes the phrase 
(How about you?): 1
5.Explanation: 
Answered Person A’s 
Questions correctly 
used ‘because’ and 
‘how about you’.
Total score: 1

1.Grammar: 1,
Answers person A 
questions: 1
3.Includes the word 
(because): 0
4.includes the phrase 
(How about you?): 1
5.Explanation: 
Answered person A’s 
questions correctly.
Total score: 0

1.Grammar: 1
Answers person A 
questions: 1
Includes the word 
(because): 0
4.includes the phrase 
(How about you?): 0
5.Explanation: Did 
not use the phrase 
(How about you?) or 
(because).
Total score: 0
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Dialogue Segment Three

Segment All Correct Not Correct 1 Not Correct 2 Not Correct 3

A: I’m great

B: I’m sorry 
I have to go 
now.

1.Grammar: 1,
2.States Intention to 
leave: 1,
3.Explanation: 
Informs speaker B  
that they have 
to leave the 
conversation.
Total score: 1

1.Grammar: 1,
2.States Intention to 
leave: 0,
3.Explanation: 
does not Inform 
speaker A that they 
have to leave the 
conversation.
Total score: 0

1.Grammar: 0,
2.States Intention to 
leave: 1,
3.Explanation: does 
not use correct 
sentence structure.
Total score: 0

Dialogue Segment Four

Segment All Correct Not Correct 1 Not Correct 2 Not correct 3

A: Why do 
you have to 
go?

B: Because 
I have to 
go running 
practice this 
afternoon

1.Grammar: 1,
2.uses (because): 1,
3.Gives reason for 
leaving: 1,
4.Explanation: Used 
‘because’ and gave 
speaker reason 
for leaving the 
conversation.
Total score: 1

1.Grammar: 1,
2.Uses (because): 0,
3.Gives reason for 
leaving: 1,
4.Explanation: Did 
not use because at 
the beginning of the 
statement.
Total score: 0

1.Grammar: 0,
2.uses (because): 1,
3.Gives reason for 
leaving: 1,
4.Explanation: Word 
order was not correct. 
Total score: 0

Dialogue Segment Five

Segment All Correct Not Correct 1 Not Correct 2 Not correct 3

A: Ok be 
safe.

B: Will do, 
bye.

1.Grammar: 1,
2.Answers person A 
questions: 1,
3.Explanation: 
answers person as 
request.
4.Total score: 1

1.Grammar: 1,
2.Answers person A 
questions: 0,
3.Explanation: does 
not answer person a 
request.
Total score: 0

1.Grammar: 0,
2.Answers person A 
questions: 0,
3.Explanation: 
incorrect grammar.
Total score: 0


